1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
//! Merkle tree types.
//!
//! # Usage
//!
//! During notarization, the `Prover` generates various commitments to the transcript data, which are subsequently
//! inserted into a `MerkleTree`. Rather than send each commitment to the Notary individually, the `Prover` simply sends the
//! `MerkleRoot`. This hides the number of commitments from the Notary, which is important for privacy as it can leak
//! information about the content of the transcript.
//!
//! Later, during selective disclosure to a `Verifier`, the `Prover` can open any subset of the commitments in the `MerkleTree`
//! by providing a `MerkleProof` for the corresponding `MerkleRoot` which was signed by the Notary.

use mpz_core::hash::Hash;
use rs_merkle::{
    algorithms::Sha256, proof_serializers, MerkleProof as MerkleProof_rs_merkle,
    MerkleTree as MerkleTree_rs_merkle,
};
use serde::{ser::Serializer, Deserialize, Deserializer, Serialize};
use utils::iter::DuplicateCheck;

/// A Merkle root.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub struct MerkleRoot([u8; 32]);

impl MerkleRoot {
    /// Returns the inner byte array
    pub fn to_inner(self) -> [u8; 32] {
        self.0
    }
}

impl From<[u8; 32]> for MerkleRoot {
    fn from(bytes: [u8; 32]) -> Self {
        Self(bytes)
    }
}

/// Errors that can occur during operations with Merkle tree and Merkle proof
#[derive(Debug, thiserror::Error, PartialEq)]
#[allow(missing_docs)]
pub enum MerkleError {
    #[error("Failed to verify a Merkle proof")]
    MerkleProofVerificationFailed,
    #[error("No leaves were provided when constructing a Merkle tree")]
    MerkleNoLeavesProvided,
}

/// A Merkle proof.
#[derive(Serialize, Deserialize)]
pub struct MerkleProof {
    #[serde(
        serialize_with = "merkle_proof_serialize",
        deserialize_with = "merkle_proof_deserialize"
    )]
    proof: MerkleProof_rs_merkle<Sha256>,
    total_leaves: usize,
}

impl MerkleProof {
    /// Checks if indices, hashes and leaves count are valid for the provided root
    ///
    /// # Panics
    ///
    /// - If the length of `leaf_indices` and `leaf_hashes` does not match.
    /// - If `leaf_indices` contains duplicates.
    pub fn verify(
        &self,
        root: &MerkleRoot,
        leaf_indices: &[usize],
        leaf_hashes: &[Hash],
    ) -> Result<(), MerkleError> {
        assert_eq!(
            leaf_indices.len(),
            leaf_hashes.len(),
            "leaf indices length must match leaf hashes length"
        );
        assert!(
            !leaf_indices.iter().contains_dups(),
            "duplicate indices provided {:?}",
            leaf_indices
        );

        // zip indices and hashes
        let mut tuples: Vec<(usize, [u8; 32])> = leaf_indices
            .iter()
            .cloned()
            .zip(leaf_hashes.iter().cloned().map(|h| *h.as_bytes()))
            .collect();

        // sort by index and unzip
        tuples.sort_by(|(a, _), (b, _)| a.cmp(b));
        let (indices, hashes): (Vec<usize>, Vec<[u8; 32]>) = tuples.into_iter().unzip();

        if !self
            .proof
            .verify(root.to_inner(), &indices, &hashes, self.total_leaves)
        {
            return Err(MerkleError::MerkleProofVerificationFailed);
        }
        Ok(())
    }
}

impl Clone for MerkleProof {
    fn clone(&self) -> Self {
        let bytes = self.proof.to_bytes();
        Self {
            proof: MerkleProof_rs_merkle::<Sha256>::from_bytes(&bytes).unwrap(),
            total_leaves: self.total_leaves,
        }
    }
}

fn merkle_proof_serialize<S>(
    proof: &MerkleProof_rs_merkle<Sha256>,
    serializer: S,
) -> Result<S::Ok, S::Error>
where
    S: Serializer,
{
    let bytes = proof.serialize::<proof_serializers::DirectHashesOrder>();
    serializer.serialize_bytes(&bytes)
}

fn merkle_proof_deserialize<'de, D>(
    deserializer: D,
) -> Result<MerkleProof_rs_merkle<Sha256>, D::Error>
where
    D: Deserializer<'de>,
{
    let bytes = Vec::deserialize(deserializer)?;
    MerkleProof_rs_merkle::<Sha256>::from_bytes(bytes.as_slice()).map_err(serde::de::Error::custom)
}

/// A Merkle tree.
#[derive(Serialize, Deserialize, Default, Clone)]
pub struct MerkleTree(
    #[serde(
        serialize_with = "merkle_tree_serialize",
        deserialize_with = "merkle_tree_deserialize"
    )]
    pub MerkleTree_rs_merkle<Sha256>,
);

impl MerkleTree {
    /// Create a new Merkle tree from the given `leaves`
    pub fn from_leaves(leaves: &[Hash]) -> Result<Self, MerkleError> {
        if leaves.is_empty() {
            return Err(MerkleError::MerkleNoLeavesProvided);
        }
        let leaves: Vec<[u8; 32]> = leaves.iter().map(|h| *h.as_bytes()).collect();
        Ok(Self(MerkleTree_rs_merkle::<Sha256>::from_leaves(&leaves)))
    }

    /// Creates an inclusion proof for the given `indices`
    ///
    /// # Panics
    ///
    /// - if `indices` is not sorted.
    /// - if `indices` contains duplicates
    pub fn proof(&self, indices: &[usize]) -> MerkleProof {
        assert!(
            indices.windows(2).all(|w| w[0] < w[1]),
            "indices must be sorted"
        );

        let proof = self.0.proof(indices);
        MerkleProof {
            proof,
            total_leaves: self.0.leaves_len(),
        }
    }

    /// Returns the Merkle root for this MerkleTree
    pub fn root(&self) -> MerkleRoot {
        self.0
            .root()
            .expect("Merkle root should be available")
            .into()
    }
}

/// Serialize the rs_merkle's `MerkleTree` type
fn merkle_tree_serialize<S>(
    tree: &MerkleTree_rs_merkle<Sha256>,
    serializer: S,
) -> Result<S::Ok, S::Error>
where
    S: Serializer,
{
    // all leaves are sha256 hashes
    let hash_size = 32;
    let mut bytes: Vec<u8> = Vec::with_capacity(tree.leaves_len() * hash_size);
    if let Some(leaves) = tree.leaves() {
        for leaf in leaves {
            bytes.append(&mut leaf.to_vec());
        }
    }

    serializer.serialize_bytes(&bytes)
}

fn merkle_tree_deserialize<'de, D>(
    deserializer: D,
) -> Result<MerkleTree_rs_merkle<Sha256>, D::Error>
where
    D: Deserializer<'de>,
{
    let bytes: Vec<u8> = Vec::deserialize(deserializer)?;
    if bytes.len() % 32 != 0 {
        return Err(serde::de::Error::custom("leaves must be 32 bytes"));
    }
    let leaves: Vec<[u8; 32]> = bytes.chunks(32).map(|c| c.try_into().unwrap()).collect();

    Ok(MerkleTree_rs_merkle::<Sha256>::from_leaves(
        leaves.as_slice(),
    ))
}

#[cfg(test)]
mod test {
    use super::*;

    // Expect Merkle proof verification to succeed
    #[test]
    fn test_verify_success() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        assert!(proof
            .verify(&tree.root(), &[2, 3, 4], &[leaf2, leaf3, leaf4])
            .is_ok(),);
    }

    #[test]
    fn test_verify_fail_wrong_leaf() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        // fail because the leaf is wrong
        assert_eq!(
            proof
                .verify(&tree.root(), &[2, 3, 4], &[leaf1, leaf3, leaf4])
                .err()
                .unwrap(),
            MerkleError::MerkleProofVerificationFailed
        );
    }

    #[test]
    #[should_panic]
    fn test_proof_fail_length_unsorted() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        _ = tree.proof(&[2, 4, 3]);
    }

    #[test]
    #[should_panic]
    fn test_proof_fail_length_duplicates() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        _ = tree.proof(&[2, 2, 3]);
    }

    #[test]
    #[should_panic]
    fn test_verify_fail_length_mismatch() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        _ = proof.verify(&tree.root(), &[1, 2, 3, 4], &[leaf2, leaf3, leaf4]);
    }

    #[test]
    #[should_panic]
    fn test_verify_fail_duplicates() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        _ = proof.verify(&tree.root(), &[2, 2, 3], &[leaf2, leaf2, leaf3]);
    }

    #[test]
    fn test_verify_fail_incorrect_leaf_count() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let mut proof = tree.proof(&[2, 3, 4]);

        proof.total_leaves = 6;

        // fail because leaf count is wrong
        assert!(proof
            .verify(&tree.root(), &[2, 3, 4], &[leaf2, leaf3, leaf4])
            .is_err());
    }

    #[test]
    fn test_verify_fail_incorrect_indices() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        // fail because tree index is wrong
        assert!(proof
            .verify(&tree.root(), &[1, 3, 4], &[leaf1, leaf3, leaf4])
            .is_err());
    }

    #[test]
    fn test_verify_fail_fewer_indices() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        // trying to verify less leaves than what was included in the proof
        assert!(proof
            .verify(&tree.root(), &[3, 4], &[leaf3, leaf4])
            .is_err());
    }

    // Expect MerkleProof/MerkleTree custom serialization/deserialization to work
    #[test]
    fn test_serialization() {
        let leaf0 = Hash::from([0u8; 32]);
        let leaf1 = Hash::from([1u8; 32]);
        let leaf2 = Hash::from([2u8; 32]);
        let leaf3 = Hash::from([3u8; 32]);
        let leaf4 = Hash::from([4u8; 32]);
        let tree = MerkleTree::from_leaves(&[leaf0, leaf1, leaf2, leaf3, leaf4]).unwrap();
        let proof = tree.proof(&[2, 3, 4]);

        // serialize
        let tree_bytes = bincode::serialize(&tree).unwrap();
        let proof_bytes = bincode::serialize(&proof).unwrap();

        // deserialize
        let tree2: MerkleTree = bincode::deserialize(&tree_bytes).unwrap();
        let proof2: MerkleProof = bincode::deserialize(&proof_bytes).unwrap();

        assert!(proof2
            .verify(&tree2.root(), &[2, 3, 4], &[leaf2, leaf3, leaf4])
            .is_ok());
    }
}